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Pitfalls in blunder detection techniques

The blunder detection and location techniques, although always being of
essential importance for quality control of adjustment results, gained
more general scientific attention for the past few years only. In
numerous recent publications, the problem of blunder detection has been
approached from various standpoints and many experiments have been com—
pleted in an effort to achieve an optimum procedure. The paper represents
a trial to scrutinize the published concepts, to analyze where and when
the failures may be expected and finally to discuss the prerequisites,
potentials and limitations of blunder location in practical applications
in aerial triangulation.

Die Verfahren der Prufung und Lokalisierung groben Fehler, obschon sie immer
von wichtiger Bedeutung waren fur die Qualitdtskontrolle ausgeglichener
Resultate, haben erst in den letzten Jahren eine mehr wissenschaftliche
Aufmerksamkeit gewonnen. In vielen ktrzlich erschienenen Verdffentlichungen
wurde das Problem der Priufung auf grobe Fehler von verschiedenen Stand—
punkten angefasst und viele Versuche zu einem optimalen Verfahren zu
gelangen wurden ausgefithrt. Der vorliegende Beitrag versucht die verdffent-—
lichten Begriffe eingehend zu untersuchen, zu analysieren wo und wann Fehl-
entscheidungen zu erwarten sind und schliesslich die Voraussetzungen, die
Anwendungsmdglichkeiten und Beschridnkungen der groben Fehlerlokalisierung
in Anwendungen der Aerotriangulation zu erdrtern.

Les techniques de recherche et de localisation des fautes, bien qu'ayant
toujours été d'une importance essentielle pour le contrdle de la qualité
des résultats de la compensation, ont gagré une attention scientifique plus
générale depuis quelques années seulement. Dans beaucoup de publications
récentes, le probldme de la détection de fautes a été appréhendé de divers
points de vue et plusieurs essais ont été réalisés en vue d'atteindre une
procédure optimum. Le présent article tente d'examiner minutieusement les
concepts publiés, d'analyser oll et quand des echecs sont 2 attendre et
finalement de discuter les conditions préalables, les possibilités et les
limites de localisation de fautes dans les applications pratiques d'aéro
triangulation.
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1. Introduction

The paper deals with the numerical treatment of blunders (gross errors)
amongst the observations to be adjusted. The present mass application of
photogrammetric numerical procedures (e.g. analjytical plotters, on-line ana-
logue plotters, aerial triangulation, etc.) requires a practical solution
for location of blunders as quickly as possible. Otherwise one of two evils
has to be tolerated, i.e. either the smooth and quick throughput of numerical
data shall be seriously jeopardized by inadequate manual location methods,
or the expected accuracy of adjustment results will be jeopardized by the
presence of blunders. While the latter evil is absolutely unacceptable, the
former one is highl; undesirable. We intend therefore not to dwell so much
upon theoretical aspects, and mathematical and statistical proofs (which
have already been treated extensively) but to discuss the actual practical
applications of blunder detection techniques and its dangers.

2. Present needs for blunder detection

The elimination of blunders from observations is a complex problem, which
may be solved in various wajys and at various stages of observation treatment,
i.e. by using reliable measuring instruments; by application of observation-—
al methods designed to prevent the occurrence of blunders; by safeguarding
against erroneous data transfer; by planning such a pattern and arramgement
of quantities to be observed, which makes occurrence of blunders transparent;
by testing the functional conditions which the observations in question must
satisfy (e.g. sum of angles in a triangle must be 200°); and finally by
detection of blunders through analysis of adjustment results (residuals).

The ideal situation would be, naturall;, that preventive measures would
guarantee the absence of blunders. Such a guarantee is at present practice
hardly possible. In spite of that, all preventive measures are extremely
important, and should, by all means, be taken in order to reduce the number
of blunders to an absolute minimum. It follows that the last mentioned
method for detection of blunders, i.e. analysis of residuals, is then alwayrs
required as a final safeguard immediatel; before the adjustment results would
be accepted. Practically, it means that together with each adjustment algo-
rithm there has to be a correspondirig blunder detection algorithm.

3. Bpecifications for algorithm

In order to specify such an algorithm in more detail, we have to take into
account economical aspects as well as present technical potentials and con-
straints. It seems that whenever the numerical photogrammetric methods are
applied, a modern high speed and high capacity computer is an inevitable
prerequisite. In such an environment we shall assume that, in general, the
following ctatement is true : "The computations are quicker, more user
friendly and less expensive than the completion of observations". It follows
that the mentioned algorithm should be designed to locate the blunders by
computational methods and not by reobservations. The location has to be
possible without an excessive number of observations. From the practical
point of view, it is desirable that the detection algorithm is designed to
treat blunders of a large magnitude equall;” well as blunders of the smallest
possible magnitude. TFor the same reason it is unacceptable that the algo-
rithm is based on an apriori knowledge of the number of blunders which majy
occur. Further, the detection algorithm should not be restricted to standard
cases only. It is also of importance that the algorithm provides information
on sensitivity of detection and issues a warning if this sensitivity is too
low.
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4. Basic formulae

In order to enable references for further discussions, we shall give the
basic relations relevant to blunder location. In order to make it =zs short
as possible, we shall avoid any proofs and derivations (which may be found
in Mikhail (11) and Stefanovic (16)). The relation between the vector of
residuals v and true observational errors £ is given by

(4.1) v o= - QWE = WE

which is valid generally; for an;” type of the least squares adjustment. The
matrix Q represents the cofactor matrix of residuals and W is the weight co-
efficient matrix of observations. All Q, W and v are known or ma; be com-
puted after adjustment. In order to enable easier general treatment of ob-
servational errors, the true errors é shall be replaced by uncorrelated,
equally accurate_errors £& . This may be achieved by the following trans-—
formation, € = V& , where V may be obtained by decomposition W = VTV, which
is always possible if W is a s;ymmetric positive definite matrix. So the
residuals can be written as a function of uncorrelated, equally accurate
observational true errors

(4.2) v=-QE=-TE

The matrix W = — QW is idempotent : QWQW = QW, which for the case where W
is non-singular gives the following relation QWQ = @Q or

(4.3) T - Q

The relations (4.1) and (4.2) are of basic importance for the understanding
of blunder detection problem.

4.7. Acceptance interval

We assume, that the errors E'have the following characteristics

(a) errors of a smaller magnitude have a larger probabilit;; (b) no error
can assume a magnitude larger than t4 by normal observational procedures.
With the help of error propagation laws the acceptance interval for vy may
be estimated using (4.2) and (4.3)

(4.4) vl Va,; ¢

The inequality (4.4) may be divided by \/qii , what brings it into the form
usually applied :

(4.5) a, = \v. 1/ %i—i<t1

and where the left hand side is completely defined after adjustment is com-
pleted. For the expression on left hand side the term standardized residual
is used (Mikhail (11)). The symbol t, stands for the so—called critical
value. In place of this statistical %erm we shnll use the technical term
tolerance in the further text, meaning the maximum value an individual error
Q may assume. It is not difficult, by application of similar reasoning, to
estimate the acceptance interval for more than one residual simultaneously.
For this purpose we select several rows, i, j ... (say p in number) from
expression (4.2) and obtain the condition :

(4.6) dp <tp

where tp represents the upper bound for the norm of a vector containing
p errors Zr 3

(4.7) T = ||&]l =\/£'2 + Zg ¥ owvww * BT

P 1 IS}
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t = max t
b
The quantity d may be computed as
(4.8) a° d vy
’ p = Yo B Yp

where v, is a vector containing a selected combination of p residuals and
Q 1is tﬁe corresponding submatrix c¢f Q. For the sake of completeness, we
shall also add the well-known acceptance interval for the sum of weighted
squares of the entire set of residuals

0L
(4.9) s =V v <: b
wvhere v 1s the number of redundant observations.

4.2. Sensitivity indicators

Obviously, even if the inequality (4.5) is satisfied, in general, we cannot
say that the individual values € on the right hand side of equation (4.1)
are zll ingide the pre—-specified bounds. Simple analyeis reveals, that if
the left hand side of a row (4.1) is known (i.e. v;), there are n-1 free
urknowns € on the right hand side, which may assume any arbitrary values.
In order to overcome this difficulty we shall suppose that n-1 errors are
acceptable (i.e. compatible with assumed stochastical characteristics).
Thern we are interested in the maximum magnitude of a true error € ; selected
from all n true errors. With the help of row i of (4.1) its estimation may
be completed using the known error characteristics and Cauch;—-Schwarz in-
equality. Such a maximum magnitude (maximum urdetectable blunder) shall be
denoted by e.. 3
1]
(4.10) Ryg © (d1 + 1, V/Qii (1—(wijwj.1 / Wii)) / W,
where d, = ' m, . The maximum magnitude of error £. when v. is known, has
a specilal significance : * *

(4.11) e.; = (&1 +t, V «a (1-ﬁii)) / ﬁii

& ii

Of course, we ma; select several rows in expression (4.1): i, 3, «.. (say
p in number ). Under the same assumptions as above we are now able to com—
pute the meaximum magnitude (norm) of the p-dimensional vector containing
any combination of errors £ . However, the formula shall be given only for
the case where the indices for the € in questionm and v are equal, which
corresponds to the one dimensional case (4.11). Using the same symbology
as in (4.11) the maximum magnitude in the three—dimensional case mar be
denoted by, for example, ejjkijk 3 but for the sake of simplicity the
indices shall be neglected. In such a way we may write g general formula :

(4.12) e = (dp +tp \/}\ma,x (1 - 7‘ma.x )/ Awin

where 55 = V§ 4 v? + e Apmin and Amax are minimum and maximum latent
roots o% the relevant submatrix of W and Mygx is the maximum laternt root
of submatrix Q (see 4.8)). Naturally, the expression (4.10)(4.11) and
(4.12) can be evaluated only after adjustment and are not dependent on the
procedure for blunder detection.

4.3. Apriori sensitivity indicators (blank range)

However, for planning purposes we would like to have the mentioned inform-
ation in advance. Then, of course, we have rno residuals at our disposal.

But the matrix W ma; be simulated, often with high accuracy, and for re-
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siduals (or values dp) the most conservative estimation ma; be introduced
i.e. the maximum permissible value. Naturally, such estimates are, then,
dependent on the blunder detection method. We shall assume, that tesits
(4.6) or (4.8) are to be applied. The expressions corresponding to (4.10)
(4.11) and (4.12) may now be directly written. In order to distinguish
these new values we shall denote them by e :

(4.13) e 5 = (1 + \/q - (w.lj Wy / wii)) b V a; / W

(4.14) e.. = (1 + 1 - w..) t, Va.. / w.

11 11 11 ii
(4.15) e =0+ V- N )t VAL AN

The quantities e may be suitabl: named blank range. They represent the
maximum magnitude of a blunder, which can stay undetected if the given
blunder detection procedure is applied. The sum of sguared residuals s

may also be expressed as a function of true errors :

s2 = QT WQWE = gTﬁé or in approximation Sg = %ﬁ16$ + W

2 ~ 2
22€2 T oman ¥ Wmlf'n'

Assuming that all other true errors except £. are acceptable, we may obtain
an approximate estimation of the maximum maghitude of the true error 6i when
the inequality (4.9) is satisfied

.16 = - ;o
(4.16) e, = (t, - m )/,
where mp 1s the minimum which a norm of an r—-dimensional random vector can
achieve.

4.4. Contribution of individual observations (or groups of them) to the
total sum of squares residuals

Consider the following problem : we have an adjustment with n observations,
from which r are redundant. After the adjustment, the total sum of squared
residuals s2 = VTWZ may be computed. Assume that the number of observations
is now reduced zsome observations may be excluded, say, p in number).
After completing the adjustment with the new reduced set of observations, the
new (n-p)-dimensional vector of regiduals would have been obtained v . Also
the new sum of squared residuals §° = vIWV would have been computed where W
ig in this case (n-p)-dimensional submatrix of the original weizht matrix.
The question is : what is the relation between s2 and $2 ? Tt may be shown
that the following formula is valid (see Stefanovic (16))
(4.17) é2 = 82 - d2

p
This means that the new sum of squared residuals may be computed without
actually executing the new partial adjustment, becesuse the right hand side
1s completely known directly after adjustment of the entire set of observ-
ations. While all other formulae in this chapter are valid with no restrict-
ions for any type of the least squares adjustment with non-singular observ-
ational weight matrix, the formula (4.17) is strictly valid only for urncor-
related observations and non-iterative adjustment procedures.

4.5. The limits of blunder location

The given formulae may be used to analyse the limiting factors for blunder
location. At first we shall take the case, when p =r , i.e. the number of
observations to be tested is equal to the redundancy of the system. If r
observations are excluded, we always get a perfect fit of residual system
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comprising only of the necessar; number of observations. Consequentl;,
introducing & = O in equation (4.17) we obtain d2 = &2, whut means that all
possible d, have the same value equal as the sum of sguared residuals. The
tests on all dy give therefore exactly the same result, what makes location
impossible. If the gize of the test group is increased turther, i.e. p>r,
then even detection is not possible. For computation of dy an inversion of
a submatrix of Q of size p is required. Because @ has rank r, every sub-
matrix of Q, which has a size larger than r, is singular, making the czl-
culation impossible. But even submatrices of @, which have a size smaller
than r, may become singular. So, obviously, in such a cage computation of
dp is not possible even if p is smaller than r. Concluding we may say :

in order to enable blunder location the number of Llunders has to be smaller
than the smallest size of a non-singular submatrix of  corresponding to
the observations in question. The analysis here is concerning absolute
limits only. But the question of sensitivit; is equally important.

4.6. Iterative adjustment

The question of blunder location in iterative procedures requires special
attention because most photogrammetric adjustment problems are non-linear
and therefore require iterative solutions. If all necessary iterations are
completed and the final results used, all given formulae can be employed
without any changes except (4.8). Moreover, the validity »f this formula
comes into question only if used in connection with (4.17), when blunders
are actually present. The rigorous value ﬁgr dp in such a case (to be
denoted by dp) ma; be computed as follows a2 =d2 + ¢, where c is the
correction which can be computed according to formulae given in Stefanovic

(17).

5. Definition of blunder

All variables in equations or in equalities given in Chapter 4 ma; be evalu-
ated as a result of the least squares adjustment except the tolerance tp,
which has been defined as the upper bound for the norm of a vector containing
p uncorrelated random variables (observational errors 5). The practical
problem, which has now to be solved is the estimation of the maximum tp of
the random function ty (see (4.8)), each term of which is bounded. The
procedure which is usuall; recommended for establishment of t, is the follow-
ing (Baarda (4), Griin (7), Molenaar (12)): It ic in the first place assumed
that € are normally distributed with zero as the expectation for the mean

and 62 as the apriori known reference variance. In such a case the statistic

B B B
(5.1) Xp =% /é

9
is distributed as $° with p degrees of freedom. It is, now, only necessary
to select the so—called confidence levelcX , find in the £2 - tables corres-
poriding critical value ﬁgjp and compute the tolerance

; 2 2 2
(5.2) o =X% ¢

Naturally, in place of the.}ig—distribution, we ma; use the F-distribution

which, 1f the reference variance is apriori known, leads to exactl; the same

results. We may summarize the basis for application of the above-mentioned

method

(1) True errors (£) are assumed to be normally distributed.

(2) The expectations of true errors are zero and their variance is apriori
known.

(3) Confidence level o< has to be selected.

693.



Each of the abore-mentioned points ig liable fto criticism. In the following
we shall discuss each of them in more detail in order to fitd out, vhat are
the dorngers arnd how the remed; can, eventually, be found.

5.1. Normal distribution

The experiments show thut the observational errors with which we have to
deal in photogrummetry, surveying, astronomy, etc., are often not normall;
distributed, see Romanowski (15). The shapes of distribution curves obtain-—
ed experimentally differ somewhat from normal ones and the; lack the tail
areas. This lack of tail areas complies with the definition of bhlunder
giver earlier : 1in both cases the absolute value of an observationzl error
ig limited. On the other hand the application of the normal dictribution
has great practical advantages : 1t is theoretically ver; well defined and
easily available in tabular form. The differences between the shapes of the
actual and the normal density curves are usually not ver; large if the tuils
are cut off, and the same is valid for the K 2—distribution (see fir.1.)
The mentioned shortcomings must, however, be kept in mind in order to avoid
misinterpretations. In the flrbt place, the probabilities derived with the
help of the normal (or % @ ) distribution function have only a symbolic
value. This is especially critical in the tail areas, which do not exist in
the actual distribution. In order to illustrate that, we shall give a simple
example : assume that true errors are approximately normally distributed
with kriown variance and W=I. Ve ma;
imagine an observation i for which q;;=1.
In such a case all off diagorial elements
fixg: ey in rov i are equal to zero (because matrix
—~ Q is idempotent). PFrom (4.1) we obtain
vi=€; which, if (4.5) ic satisfied, gives
51\ <; t1. Obviously, every true error
larger than tq shall be discarded by the
7 test and there will never he a wrong

.
K- tunction

X A
P 5 «
b decision whatever o& we chose (no observ-
ational error larger than the tolerance
Figure 1 can stay undetected).

5.2. Mean value and variance of true observational errors

We shall not discuss here the caseq, when expectations of true errors are

not zero, which meanc, in other words, that so-called systematic errors

exist. Obviously, there is a strong influence of s;ystematic errors on
blunder detection. But we intend to treat the blunder detection in strict-
ly productiocrial environment. Then, we assume that the mathematical models

and the measuring instruments are tested in advance sufficiently well in

order to guarantee that systematic errors are at least practically negligitle.
The same reasoning justifies then the assumption that the variance is apriori
known. No serious production can be started without knowing the accuracy
attainable with the available measuring instruments and methodg. Compared

to the gystematic error problem, the problem of the variance is zomewhat
easier to solve, because, if the apriori value is not known, we have the
aposteriori estimation of the variarnce always at our disposal. Some authors
(Pope (14)) plead for the usage of aposteriori estimated variance instead of
apriori value because "significant differences between the two are evidert

in the practice". This is, of course, alwa; s possible by inserting the
estimated variance instead of aprloll value in expression (5.71) and by using
the F—-dizstribution instead of the X2 distribution. Pope himself uses some-
what differert approach and so-called T -distribution. The usage of aposteriori
variance hag, however, the follewing serious disadrantage 1 1if there is a
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blunder amoug the obsgervations, the estimnted variance becomes large, and
additionszlly, the critical value of the F-distribution becomes 1l-rrer, if
the de:recr of freedom of the estimated variance becomes smaller. This
mezris that the tolerarce t becomes much too large and the tect (4.6) too
cntonmitive,

5.3 Selection of confidernce level <X or tolerance t

After selectin: o« , and assuming & 2 ig kriown, the tolerance (5.2) mar be
est=blished. Practically it meanc that, by doing sc, we define the maximum
observational errors, which shall be tolerated (or in other words, which
are normally not exceeded v, standard observaticnel procedures). 3ome

authors who use the formalism of statistical hypothesis testirngy for blurnder
detection (Baarda (4), Molenaar (12)), consider the selectior of ©<X as being
a matter of personzl taste. Such a procedure is natural by ususl statistical
testing, where more objective criteria are not available, and where the
relected o< reflects only the degree of cautiousness the statistician shows
against or in favour of acceptance of the hypothesis. 1In our case, however,
by selecting X we shall establish the maximum magnitude of an error, which
car: happen if the observations aure executed with due care. Such a value is,
now, not anymore a matter of taste, but exists objectively. It seems, then,
more avpropriaste not to express the tolerarce indirectl: by & —value, hut

to zive 1t direct!;. There are authors who support such a precentation

{ Molnar (13), Fdrstner (5)). If only test (4.6) is planned nothing e're
but L4 must be determined empirically. Otherwise we have to dispose with
empirical values for 211 required t.,. Such a set of values would be the
most valuable one, because it would adapt our test to the actuw! error
distribution. 1f it is mnot availakle, the apriori knowledre of 672 is
required. With help of &, tq and )Lé—tables the reguired quantities ty
ma, 2 extablished

£ . Remarks on krnowr blunder detection methods

Glacsasleal teuts on refererce variance and residusis

k'?.l‘.

The usnally applied F-test on the aposteriori reference variance ig equal

to the test on sum of squared residuals. The meritc of the test are @ it
siven ~laobal check for the whole o atem and requires Little computation.

The wericus dig-dvantase ic ¢ no blunder location ic possible and the
cencitivity ie low b+ larwe raduardancy. Obviously, the test on the reference
vardance ig useful only am o rougsh indication. With the notatinsn used in

(ﬁ.b) the cluncical test on residuals may Lo writtewn as

1 el <

i
[lere we may alen ~ive the blark rance

(6.2) = (v Va, G-w ).t /fa

1

ol

il
which compared to indiecater (4.14) alwa;gs wiver a larger value, 1f applied
to the sume obkservation, The value &;, approaches the value €,; as the Wil
approaches one. The defficlency of classical tesis on residuale has been
exterzivel; discussed in various papers. sometimes, anyhow, the merits of
the method {e.g. -mall computational effort) mny be exploited. This can be
done, as Foratuer (5) indicates, when all W:3 are equal, and even better
vhen they are close to one. Tipically, the arithmetic mean possesses such

J 1

characteristics.
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6.2. Data snooping

Faarda was the initlator of modern numerical treatment of blunders. His
varioug publications are invaluable contributions to the discussion of
statistical acpects of the problem. He also designed a blunder detection
procedure (Baarda (4)), which iz well known under the name Data Snooping.
It was used later as a basis for various invariants. Therefore, it requires
special attention. Ezoarda uses the following test :

. - ‘ ..
(6.3) W,ov / \/(mgw)ll < t,
where Wi 1s row 1 of matrix W and (WQW)ii is the diagonal element i of the
matrix in brackets. For the case of a diagonal W the above test assumes
the form (4.5). There is no attempt for numerical location procedure.
Prarde (4) concludes : "Data—snooping will therefore alwa,s be a risky
activity. Remeasurement of all x! will always be the safest way, although
this will usually be avoided for reasons of econom;, and because conceivably
remeasurements will include new gross errors'". Obviously Data Snooping is
designed onl; as a blunder detection and not as location procedure. Raarda
(4) actually requires that test (6.3) is executed only if a global test on
the reference variance indicates blunder, which is clearly a conceptual
mistake. Some users try to extend Data Snooping to enable the blunder
location (Fdrstner (5)), while others apply it strictly, even considering
ever; residual not satisfying ineguality (7.3) to be a blunder (Grin (8)).
The suggestions to compute the coefficients q;; ouly approximately in order
to reduce computational effort (Griin (8)) lead to the situation which is
somewhere between the classical test on residuals and Data Snooping with
all its consequences.
Although 1t was developed completely independently from Bazrda, we would
like to mention here the procedure developed by Pope (14). He gives a
very valuable analysis of expression (4.1). The detection procedure is
based on an inequalit; similar to (4.5) and shows some agreement with Data
Snooping. It differs from Data Snooping in the following : no test on
reference variance is required and for the determination of critical value
the so-called tau~distribution is used instead of the F-distribution. The
question of blunder location, Pope also leaves open, and requires further
diagnosis for all observations whose residuals do not satisfy the inequality.

6.3. Maximum standardized residual

Kraus (9) was probably first to suggest blunder location with the help of
the maximum standardized residual dq. The procedure is very simple : the
largest standardized residual, if it exceeds the tolerance (4.5) is con-
sidered to be a blunder. Forstner (5) delivers the proof that, if only

one blunder is present, the maximum standardized residual alwa;s indicates
the blunder. Unforftunately he neglects the other random errors as well as
the influence of iterations, so that the proof has very limited wvalue. The
experimants show clearl; that, even if one blunder is present, the maximum
standardized residual does not recessarily indicate the blunder (see Molnar
(13)). The procedure with maximum standardized residuals, therefore, in-
volves a certain risk. Concluding, we may say, that the procedure with
maximum standardized residual does not require greater computational effort
then Data Snooping and, for the case of dominating diagonal elements of W
and one blunder, delivers reliable blunder location. Here should be mentioned
also experiments conducted by Forstner (5) to enable treatment of more than
one blunder. But because it requires the knowledge of mutual relationship
of those blunders, the practical value of such approach is not great.
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6.4. Systematic elimination

In order to avoid the difficulties encountered when usirig maximum standard-
ized residual the inequality (4.17) may be additionall; utilized. The
blunder is, obviously, located if for a certain residual d1)>t1 and és;}(r_q)
ig valid. If the condition for & is not satisfied for any residual we con-
clude thut more than one blunder is present and proceed further by computing
all possible dp and after that dy etc. If both conditions are satisfied for
more than one d (or do, d3 etc) the blunder cannot be precisely located
(any of the observations indicated may be blunder). The objection against
the above method is, as mentioned by Molnar (13), that the test on § is
relatively intensitive. But the test on § is not used for detection of
blundercs, but only to distinguish among the candictes for rejection. The
detection is actually completed with help of (4.6), which is the most
gerisitive test.

6.5. Pre—adjuctment detection of blunders

The blunders may be detected even when no adjustment is completed, if
conditions equations may be established including observations and constants
only (e.g. the sum of angles measured in triangle must be equal to 2008).
The blunder location in such cases is difficult to solve because nothing
similar to the maximum standardized residual or relation (4.17) may be
found. The only remedy is recbservation or anal;sis of the coefficient
matrix, which, because of its arbitrary structure, is ver; unreliable in
general.

However, the preadjustment tests ma, be very; useful in special cases,
particularl; when individual condition equations include only a very small
number of observations. An important role is played here by a special

group of tests, which may be called quick checks. Such checks are character-
ized by low sensitivity {aimed at detection of large blunders) high location
power (each condition equation includes only a few observations) and negligible
computational effort. The checks of that trpe are inevitable by iterative
procedures, because large blunders may jeopardize the convergency of iter-—
ations. The problem of more sensitive preadjustment tests is ver; seldom
discussed in publications on blunder detection. Especially in photogramme-
tric applications, it is difficult to establish an appropriate set of con-
dition equations. One of the few contributions to this subject (Molenaar
and Bouloucos (12)) shous the deficiencies of such an approach (restriction
to the assumption of one blunder, complicated logic for location of thet
blunder and a set of condition equations which is complete for levelled
photogrammetric models only).

T. Sensitivity of blunder detection

In order to obtain practicall: useable information about blunders the follow-
ing indicators may be proposed : after completion of adjustment the indicat-
ors, e, give information about blunders which ma; still be present in the
system. The indicator ejj (4.11) is of central importance. The formula is
valid if no more than one blunder is expected in the system; in particular

if residual 1 is involved the bhlurnder is expected only in observation i.

A blunder of magnitude between t4 and e;; may stay undetected. If two or
more blunders are expected, indicator (4.14) for groups of observations may
be uced. PFor planning or research purposes the indicators of the type €
(4.15) give information about maximum magnitude of blunders which may stay
undetected when test (4.6) is used for blunder detection. For other t:pes

of tests such indicators (blank renge) may also be easily computed (e.g.

(6.2)).
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7.1. Reliability

Camrda (j) definer zencitlivit s indicator for Datn Srmupl_hg, whileh in connect—
torn with co-called relianilaits Unned wide popularity,. Thie ipdicator belorgs
to the categsory of zpriori indicaters and is dir aot comparable with (4.14).
Pecause 1t differs trowm (4.14) we shall at flect tr. to anal; e tha Ll T e
ences. Paarda introduces for the mentioned indicator the :“;,«'trﬁ'ul <7 . hApply—
ing the denotabion used earlier (6.3) ve may write
(1.1) w7y = VYV (uan),
unere /)’A is non—centrality parametor of F-diztribution — function of ~_ and

. Baarda (4) defined : "Iuterna! reliability is descriived 'o;,' the lower
Lourids v\,)[i for gross error Vf which can JlSt be detected k the test
with :"i"el,Apt‘u}“fi,bilLt,}'ﬂ". There are two ob jections for using ¥
(a) theoretical one and (b) pr"«(;tlcaL one .

(1) The value V is derived as uming tnozt o blunder is stochestical varinble
rormally dicgtributed with variance equal to refererice variarnce tut non-
zero mear. Such a concept ot blunder does rot asree with reslity, ex-—
et for a few caterories of blunders (e... observation of wroug t.rzet).
Mal functioning of recording device, for example, produces bLiunder:s which
are clearly uncompatible with above concept.

() In order to ‘llurtrate the actual informatiorn chtainabnle vy 7 we shall
assume that W73 iz computed for sn obssrvatior 1, which particlpated in
arl ';Q;Ju:»;‘cnlout. Coriceive nponin norepetitions of all observatlions, wherve
each realisatlion of observation 1 1s hiased by V5 and add’tionwil)
.affevted by random errors in th@ aame vay as other chpervatio
Pata Sunoopirng is applied on ail n adjustimente, and n .s large cnouth,
ther we expect that in 100p 7 of all cazes tne biunder shall be detected
11 obgervation 1 and in 100 (1—p )7 of cases not. Simulation wits
approximatoly rormalily distributed errors mu enzi!y nrove thel {hic will
actually be so. But is this the informatiorn we reed for bluunder detect-
Len gensitiviyy?  Some authors evern erroueousily interpred AVATET I el
sense as glvern thr e:;.

T

. Beonom:
e NN . - A

The f’n':t question, which has to te arwswered 19 whether *he uyiw,:“:\»y‘ ot

sophi.ticated numericsl blunder location methods .13 econcmicslls justified.
if l,he cor:dluloruz mertioned 1n choprters 2 and 3 are sat ostfiel, ther thv
question ma” be angvered by yewn for off-line pro-edures. In partioglar

il
cuch an answer maz, be :ivery, without any 1o tn zasen where a loocatle
blunder ma be easily discarded without i :ter‘iuus conseguenaer tor Libe
total adjustment «yotom.  When the vlonder hme to be replaced ), an arcept-
whle obrervation, the prec.re Location means reductlor of remesiromenta

to atsolute minimum. The saince achieved o such a war e expecied ro
compete with increared comput=tiovng! efl{ort. In phovorrammetr: the re—
messurements mean usually that the wiole model nr photo, where blunder was

f‘ound hag to be reobwerved. Do, 1f we hzave to den! ol - with tne Llaot
mertioned categor; of oblservations, cvery location more precice tShan the

ldmf fication of model or pholo to be me: i
T it 1s required that tne syootem should pe fool proct, recaunve oy tlurder
which escapes direct seruti sher digcovered too late mav have severe
firancial conserquencec (e. f. pm‘ Jtiss to be payved to the contractor ),
we encounter different cituztions. Such a ¢ystem may be realized 1n one of
the tvo wars ¢ (a) by plarning the confi uratice of observation: .u such
a wa, hhiat even simple tests suarantee hich sensitivity, or (u) ) application
of the most censitive detection metnhods. The reseurch (see Molnar {133,

et

sured, hag litile econumicu s

et
N

—+
¥
~
—
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Amer (2)) makes it clear that the first solution would often require sub-
stantial increwse in the number of observations. The second solution
requires, uaturall , also proper planrning. Additionally, at least, diagonal
elements of mutrix W (practically only of Q) have to te computed. Application
of the test (4.5) or Dala Snooping gives ther optimal sensitivity for detect-
ion (af t, 1s properly established), but requires reobservation in order to
loecate bhlunders. With practicall; the same computational effort and sens—
itivit, the maximum standardized residual gives additional location possi-
hilit;” and elimiates umnecesgary reobservations. The maximum standard-
ization residual is ecpecially risk: to use 1n case of more than one blurnder.
Iri order to avoid difficulties, which application of maximum standardized
residual may cause, the inequality (4.17) may be used, and this requires no
additional computation. Such a procedure ma; become uneconomical, if more
than one blunder is present, because of rapid increase in computational
effort, as Mikhail remsrks in (10). But the alternative solutions, in cage
of several klunders, are also not particularly inexpensive. The procedure
with maximum ~tandardized residual requires, then, several repetitions of
adjustment, ot to mention that possilble wrong decicions have no positive
economical effect also. Taking this 21l into account, the proposed procedure
might turrn, anyhow, economicall; acceptable. The aliove conclusions are,
naturally, valid only if the structure of matrix W is unfavorable. In
opecilal casen eimplified procedures are more economical. E.z. in case of
arithmetic me~r. the maximum absolute residual is reliable znd obviously the
most economical klunder indicator. There are also other aspects of economy
of blunder detection, which have not so much to do with the particular pro-—
cedure applied. Without any doubt, the economy of the whole procedure is
better if the blunders may be detected and located as soon as possible, at
bect during the completion of observations (on line). In such a case the
sophisticated blunder detection procedures are not so obvious. Anjyhow,

even then, the; guarantee discover; of small blunders and rapid remeasure-—
ment. Also, the large adjustment systems which include numerous observations
are obviousl:; more difficult to handle than smaller systems. The danger that
indefinite situations occur is much greater in large systems, because the
test on &2 becomes less sensitive due 15 larger redundancy (see (4.16)).
There is also risk fer larrer number of blunders, what makes the detection
procedure in any case more expensive. Therefore, decomposition or large
adjustment systems into smsoller uwaits might show economical dvantagres, if
sensitivit;” 1s not reduced too much. Such decomposition is poscible for
aerial triangulation (relat;ve orientetion, model formation, triplet adjust-
ment, 3trip formation, strip connection, subblock adjustment, etc.). Some
of the units may be adjusted simultaneously with completion ot observations.
Many authors support such a procedure (Mikhail (11), Molnar (13) otes }-
Testing of the total syctem should, anyhow, not be neglected as a final

test of highest sensitivit;. But :f partial tests are properly executed

we do expect that only occasionall; some blunders will not be detected by
them.
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